Exercise 36

(a) The curve $y=x /\left(1+x^{2}\right)$ is called a serpentine. Find an equation of the tangent line to this curve at the point $(3,0.3)$.
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.

Solution

Start by finding the slope of y at $x=3$. Evaluate the derivative using the quotient rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{x}{1+x^{2}}\right) \\
& =\frac{\left[\frac{d}{d x}(x)\right]\left(1+x^{2}\right)-\left[\frac{d}{d x}\left(1+x^{2}\right)\right](x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{(1)\left(1+x^{2}\right)-(2 x)(x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

Evaluate it at $x=3$.

$$
y^{\prime}(3)=-\frac{2}{25}
$$

Therefore, the equation of the tangent line with slope $-2 / 25$ that goes through $(3,0.3)$ is

$$
y-0.3=-\frac{2}{25}(x-3)
$$

